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ABSTRACT

l The previous theory (1962) is extended to the case of an

asymmetrical potential of the main body especially in the

case of small eccentricity by assuming that Jn, the coeffi-

cient of the n-th order zonal harmonics of the potential, is

of n-th order of magnitude and the eccentricity is of the first

order of magnitude. Here there is a peculiar i<:td of libra-

tion which never occurs in the case of moderateec_cntricity.

This peculiar kind of librarian splits into two kinds of

librarian, depending either on the anti-asymmetrical terms

prevailing case or on the symmetrical terms prevailing case,

which is a continuous transformation of the type described

in the previoustheory. Numericaltest discloses that for the

earth the former peculiar kind of librarian occurs. Also it

is shown that the fifth coefficient is comparatively large and

plays an important role in the asymmetrical theory for the

caseofsmalleccentricity. The presentpaper shows that the

anti-asymmetrical terms can not be neglected for the earth

in the case of small eccentricity.

tThis work was performed under a National Academy of Sciences Past-doctoral

Resident Research Associateship program connected with NASA.
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§ I Introduction

In the previous paper by the same author (196Z) the motion of a

close satellite in the vicinity of the so-called critical inclination was studied.

However, at that time the author omitted the effect of the anti-symmetrical

terms in the potential of the main bodies. The _h_o_y It'_eludlng these

terms was given, for example, byY. Kozai (1961). However, in spite

of his comment on the case of small eccentricity, it does not seem

very extensive.

Therefore the author decided to develop a theory to avoid the

difficulty connected with small eccentricity. _ preliminary consid-

ration shows that this difficulty arises only in the vicinity of

e = 0, and that there is no trajectory in general extending from the vicinity

of e = 0 to a value of the order of the unity. Keeping this in mind,

the author has expanded the Hamiltonian into a power series in

e, which is assumed to be of the first order of magnitude, assuming that

Jn ' the coefficient of zonal harmonics of n-th order, is of the n-th order

of magnitude, and that the deviation given by the following formula

is assumed to be of the second order:

= 1 - 5H 2 (_Zao)'l (l.l)

where H, a constant, is the projected angular momentum to the equa-

torial plane, and a o the mean semi-major axis.

The necessary terms up to the sixth order of magnitude in this

respect are picked up from the Hamiltonian F', which is given by

removing the so-called periodic perturbation terms. The terms
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lower than the sixth order are all constant, therefore the sixth order

terms are considered as the leading terms in our theory.

The author found that the equation of motion can be reduced to the

same type as the ones given by I-I.Andoyer:

dh _F dk _F

d_" _h' d'r _k '
(l.z)

whe re

F = -13h + (W +/3')h2 + (%'-/3') k2 + (h2 + k2) 2, (1.3)

with a different restriction on the sign of /3' than that given by Andoyer.

He assumed a restriction such as

/3' >0,

which is always confirmed in his theory connected with the librational

problem of asteroids. In our theory, however, this restriction should be

removed; namely, in some case we have /3'< 0 as well as _' > 0. Espe-

cially in the case of the earth, /3ais negative. Therefore, some change

from his theory must take place. This slight change might easily be

overlooked, but as will be seen later in this paper, some alternations

are required afterwards, if we want to have real expressions for the

solutions.

The main purpose of this paper is to develop the theory with this

difference iN mind, and exclusively to give the case for /3' < 0. §2 pre-

sents a preliminary discussion on obtaining the equations of motion in

Andoyer's form. §3 is the same as that of his theory; however, in

order to avoid some confusion the present author rewrites the results
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in a very compact form. In §4 some changes from his own appear in

separating the several cases connected with the relation between the

quantities T. = 7//32/3 and /3' =/3,//32/3 §5 gives a classification under

which the solutions connected with the quantity u. = u//34/3 , where u is

the energy constan_ of the system, should De written down _eparately.

§6 gives the whole expressions of the solutions in the real number repre-

sentation. §7 is an appendix which gives the characteristics, which

means the trajectory within the plane of e cos g and e sin g xvithout any

attenLion to the relation with the time, the independent variable. Several

pertit_ent numerical results are given. §8 gives some discussions related

with the convergency, the relation to the previous theory and soforth.

Finally §9 gives the conclusion.

In order to test the assumption imposed on Jn' the quantities for

the earth are listed below - not only in actual values but also in units

of proper powers of so/3I/3 = 0.0528, which is assumed to be of the

first order of magnitude:

J2 = 1082.35 x 10 "6 = 0.3882 /32/3 So2

and

J3 : -2.566 x 10 -s = -0.0174 /_3/3 a 03,

= 4J4 -2.14x 10 .6 =-0.275f14/3ao ,

Js = -0.063 x 10 .6 = -0.154/3s/3 aoS

Roughly speaking, these numerical values show that J2' J4 and Js play

approximately the same order of role in the vicinity of e = O, say
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e = 0. i0 or 0.05; on the other hand, Ja does not take any important role

here.

2. Equation of Motion

The potential, under which influence a negligible small mass parti-

cle moves, is assumed in the following form:

V =r - Z_n Pn(sin S ,

where ;z=Mk 2, k being Gaussian constant and Mbeing the mass of the

main body,

r is distance of the particle from the center of the

main body,

_is the declination of the particle,

Jn'S represent numerical constants which characterize the

sphe r oidal potential;

in this paper the summation _extends from Z to 5 as seen later.

Using a result of the so-called secular and long periodic parts in

the original Hamiltonian such as given by Y. Kozai (1962a), we may

pick up only the following necessary parts provided that Jn is assumed

to be of the n-th order of magnitude as well as the eccentricity e to

be of the first order:
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F_ 7_

16 L 6

+ 21 _6 J4 e2

40 L lo

3 _z6 J22 02 cos 2g
40 L lo

3 _6J4 e2 cos 2g
40 LlO

3 #s J3
+ e(e 2 - a) sin g

4r_ L_

3 _7 J2 J3
+ e sin g

4 _r_ Lx 2

9 _r Js
+ e sin g, (2.2)

10 _ Lx2

where a = i - 5H2(/_ao)'1 = aconstant whichisassumedtobeofthe secondorder,

and the other notations correspond to Delauney's. In this expression, the

terms ofbeyondthe sixth order ofmagnitudeare neglected. As theHarniltonian

has only sixth order of magnitude and nothing else, neglecting the higher

orders, we znay take ff and N as the canonical variables,

_e sin g =f, _'Lecos g =77,

in the canonical equations of motion:

d# _F* dN 3F*
- - (2.3)

dt 377 ' dt b_
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For mathematical simplicity, if the canonical variablesandtheinde-

pendent variable are changed:

l
k = e cos g, h I = e sin g, /

3 _4 j2 3 _1/2 J2
T- t - t,

16 L 7 16 ao7/2

(z.4)

then the equations of motion will be

dh i °FI dk 3FI

d--_---_k' d'r ?h 1
(2.5)

where by neglecting an unnecessary constant in F*,

"- 16 L 6

F1 = -3- _4 .[_(F* - constant)

= -/31h + (')11+ _31')hl2 + (')11-/31') k2

+ 131'_(hi2 + k2) h I + (hi2 + k2) 2, (2.6)

with

%

4 __J 4 J3 24 Js

_1-" +_-_j2 a ° )/'_ ao a S_j2 a 3'
o

14 J4

"Yl 5 J2 ao2

ao2

4 J3

_1 _ J2 _o

> (z.7)



In order to remove the third degree terms in h i and k, h I is changed to h

given by

I u

Further, if the equations are transformed in terms of p and q,

p = h + ik, I

/q=h-ik,

(z.9)

the equations can be written as follows:

dp -2i $_ dq 3F

bp
(z.10)

with

1 /3' - p2I /_(p + q) + 7p q + _ (p2 q2) + q2_--_ (z.ll)

wher e

ar:d

2 J3 2 18 Ja 2 16 J 2 J4

F-F I =-_ a-- +
J22 ao 2 25 ,[2 ao4 25 j2 a ao 4

24 J3 Js 3 I34
+----- + = constant

25 j22 804 25 j24 ao4

_4 8 J4 2J 2)

a 4

_= g +sj 2 s "_
2 J23

14 -]'4 4 J3 _
7 : -2a +

S J2 %2 5j22 ao

Ja 24 Js

%3 SlggJ2ao _

2

(z.tz)



The form of the Hamiltonian (2.11) shows that it is the quadratic

in p or q, respectively; this was the technique which H, Andoyer (1903)

used for the problem associated with the libration near the commensur-

ability between the mean motion of asteroid and that of the disturbing

body, Jupiter. Therefore, we can follow after his development in order to

solve the equation of motion. Nevertheless, there is a slight difference

between his case and ours concerning the sign of some coefficient. He

assumed that the coefficient /3'is always positive; but in our case /3'

can take a negative value as well as a positive one depending on the inter-

relation of the magnitude of Jn's. Especially for the earth it is negative

as seen later. Therefore, we are restricted to take the negative /3' case

here unless otherwise mentioned, because for the positive case any

alternation from his results is not required.

§3. General Expression of Solution

The general form of the solutions does not change from Andoyer's

results. But, in order to avoid some confusion about the real�complex

criterion, we shall make a slight change in the notation. The calculations

are omitted but only the results obtained are given here.

The solutions of equations (Z.10) are given in the following form:

P i al/_, _ _+x+_#-_x -_ _-+X-Fp-_x

1 _(p + x) 1 )1-_ -_ _(_-x ,
--I

(3.1)

i i) ( i i)q-T- _ 7-+k+ p+ X -_ _-+X-

I _(_+x) ' X)]-{ -{ _(p- ,
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with

8a(p) --(a12 + a O' a2)(ao')'1 (real),

_,(p) = i(%2 aa + 3a o, al a2 + 2a13)(ao,)-3/2

1 ,)1/_/3-1 , (real),

_'(×) = __' _'_(ao')l/_ _'(p) (imaginary),

(imaginary),

(3.2)

whe 1° C.

%' = -8_', a 1 = -2fl,

1 (8u + 2_ '2 - 272),
a 2 =

a 4 = 8U]_' - ,/_2;

a_ =/3(y -/3' ), (3.3)

u is the energy constant such that

F+u=O. (3.4)

(z) is the Weierstrassian elliptic function with the parameters,

g2= - ao t a 4 - 4a 1 a 3 + 3a22,

g3 = 2al a2 a3 - ao' a2a4 - a12 a4

+ aot a32 o a23,
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such that

_'(z) 2 - 4_ 3 (z) - g2 _(z) - ga'

where _o'(z) denotes the derivative respective to z.

-function defined by

_3.6)

_(z) is the associated

_(z) - _ - _(>) - d_.
(3.7)

In the expression of solution (3.I) k is an integration constant, which

with the energy constant u forms a system of the arbitrary constants in

the solution of the equations of motion, u is of course a real value; k is,

however, not necessarily real. k should be taken such that the expression

(3.1) could give real values of h and_k_

1
h = = (p + q),

1 (2.9)'
k = 2--i (p - q)"

§4 Discrimination Among Several Cases

At the first step it is necessary to know the sign of the discrirninant

For brevity, let

and

k = g2 a - 27 ga 2. (4.1)

1 (4u 7 aP = _(X) = _ - + 6/3'v- s#'a)

O -- _a'(x)/i - 16u/3' - 4/3' (/3' - 7)2 - 2/32 ,

(4.2)
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which are also real values even for our case, then

and

g2 = 12p2 - 4(7 - 2/J')Q,

g3 = -8P3 + Q_ + 4(31- 2/3')PQ.

(4.3)

It follows accordingly that

= I024Q 2 _u 3 -A
[

! (7 + _')2 u=
2

I
+ i'6 (_ + _') [(_ + _,)3 + 9_2]u

(4.1)'

For brevity, let

!

u. = u//_ 4/3, _. =/_'//3_/3,

Q. = Q/_2, p. =p/_4/3,

(4.4)

and so forth, then

{ ,A. ,- 1024Q. 2 u. a -_ (7.

[ ;I}-_ (_. +_)3 +

+9_i u.

(4. i)"



If the subscript*is omitted inthis expression, then every term remains

the same as in (4.1)' except for /3 which is replaced by the unity; besides,

as easily seen, _3 is of the third order of magnitude, and we may

choose

h. : h/,8 I/3 , k, : k//3 I/3 (4.4)'

As a result, all quantities are measured in units of proper powers

of _:/3 which is assumed to be of the first order of magnitude, provided

that _ / 0. Therefore without any restriction we may take /3 = 1 hereafter

unless otherwise stated. This is an application of the non-dimensional

analvs is.

]n any way, there are two cases for // = 0:

i) Q = o. (4.5)

If we consider (4.5) as an equation for u , then we know the value u0

satisfies this equation"

which

I I ,-I
u0 =_(_,__)2 +_ . (4.6)

ii)
1 _, u 2 _+_' [(u+9,)a 9]f(u) = u a -_ (T + ) + 16 + u

1 fl, a 27 0. (4.7)6-_(_ + ) - 4

Here two cases again are divided according to the sign of the discrimi-

nant A' of f(u) itself:

- F_ (7 +_)a + ; (4.8)
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namely, if

3

7 +/3' > -5' (4.9)

then among the three roots

complex values, while the other, say u,, remains real.

if

3
7+/3' <-_,

ul ' u2, u_ ofEq. (4.7)intermsofu, two ofthem must

On the other hand,

(4.10)

then the three roots are all real,

u 3 < u 2 < u I .

Now, it is necessary to know in what sequence the roots u (i = 0, I,

2, 3) appear; in other words, to know the relation between u0 and

u i (i = I, 2, 3) (A' >0) or u I (Zl'< 0). Inthe case when (4.9) occurs we

can easily determine it in the following way: first of all we have

>

f(u) >0, if andonly if u < ui; (A)

however, since

_4 1 2f(u0 ) = (72 +2fl,-1)p0 ' (4.11)

where P0 denotes the value of Pwhen u =u, we have, if /3'> 0, the second

hand side of (4.11) is always positive, but if /_'< 0, this is not always true.

Consequently, we have a new discrimination, which never occurs in the

case when /3'> 0:

I -I < <

if T 2 + _ /3' > 0 then u 0 > Ul " (B)

On the other hand, in the case when (4.10) is satisfied, we may only say

that
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if 7 2 + _ /3 < O, then u 2 < u 0 < u I,

or U 0 < [l 3 ;

1 ,-I ,< Uoand i f ?/2 + 2 fi > O, then u I '

or U 3 '< U 0 < U 2 "

(c)

The detailed criterion will be given in a later part.

In the second step it is necessary to divide the cases according

to the sign of (g3)i (i = 0, I, 2, 3), where (g_)iden°tes the value of g3

when u = u . This is important because, for example, if (g3)i < 0 then
I

the energy constant u i corresponds to the unstable equilibrium point (s).

It is easily confirmed for (g3)0: since

<g3>0-SPo s12 ( 3

when fi'< O,

1 -2 < < 0. (D)if 7-fi' + g fl' > 0, then (g3)0 >

°

In order to know the relation between u 0 and u i ( i = i, Z, 3) in more

detail as well as the sign of (g3)i' it is convenient to divide the 7 vs. _'-

plane into several parts so that in each of them the situation never changes.

For this purpose, it is sufficient to draw lines where the situation would

change. The following four lines serve this purpose:

3
7 + _' = - _, (4.13)

15



y + (-2/3') -_12 = 0 (4.14)

,c t -1/2"7- (-2 _>) =0

1
and --/ -/3' + _ (/3,)-2 __:O.

(4.14)'

(4.15)

In ,_,.fec_,-*_ '- u 0 =ui occurs only on the lines (4.14) or (4.14)'; u 1 = u 2 or

u 2 tl3 only on the line (4.13); and (Z3)0 = 0 only on (4.15), (g3)i= 0

(i : O) occurs on either (4.14), (4.14)' or (4.13), as is easily confirmed.

Before dividing the plane by the four lines given above, for the sake

o :simplicity let us consider the division by separating the negative _'

h .if-plane into three parts:

Case I. fi' <-2,

in _his case we have

3 -1/2 /2 1 --2

-/3' - )- > + (-2/3') > - (-2/3')-* > ,8' -,_ (>3') (4.16)

1
Case I[. -2 <fl'< --

2'

, 3 , -1/2 , I ,)-2(-2/3') -1/2 > -/3 -_ > - (-2/3) >/3 -_ (/3 (4.17)

1
Case !II. -_ < /3' < O,

3 1
(_2/3')-'n > -,_'__ > - (-2p,)-1/2 >2'-_, (/3') -2. (4.18)
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The reason why we make a discrimination between Case II and Case III

is that

i
if fi' = -] then

_p' 3 p, -1/2 /_, 1 ,-_ =-(-2 ) = _g_ -2 : -1,

so that a domain -/9' 3 > >-(-2/3' -1/2, --_ 7 ) for example, is cut

, 1
out at /3 = __ and there is no continuous route connecting the regions

corresponding to Case II and Case III without meeting any one of the

above four lines.

Now, we sub-divide the regions with respect to the four lines

stated above; for example, Case 11 means _'< -2 and 7>-fi' -2'3 Case

/3' < - 2 and -- /_' 3 fi' -1/2
12 -_ > 3/ (-2 ) and so forth. This sub-division

is not essential l as a whole because Case 11 , II 1 and 12I 1 , for example,

have no differences in the sense of continuous deformation. Therefore,

it is useful to assembly some of the too sub-divided cases into one

case, then finally we have the following division:

Case i which involves cases [i' 111' IIIi;

Case 2' which involves cases 12;

Case 2" which involves cases If2, 1112;

Case 3' which involves cases I , II
3 3

Case 3" which involves cases III a;

Case 4' which involves cases I4, II 4

Case 4" which involves cases 1114;

Case 5 which involves cases I s , II 5, IIIs.

1 There is, nevertheless, a practical advantage, because fl',or speaking more precisely

,3', -- /3'//0 2/3, depends only on the coefficients of the zonal harmonics for the potential

and is totally independent of the initial condition.
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The Fig. I shows the division in the /3' vs 7-plane. Here for the

sake of comparison, the case where /3' > 0 (Andoyer's sub-cases,a',

a" , b', and b") is added.

Wo ovaluate u i and (g3)i in each case either by giving exErorno

values for /3' and 7 or by giving special numerical va'lues as

given in section 7. In any case one set of valu_e for _' and 7

is enough to determine the sign of (K3)i and the relation of u0

and ui(i= I,Z, 3).

As an example, the case 3' is shown where extreme vaRues am given.

Case 3' _' = - e -1/3, _,= + E 2/3, E-. + 0,

1 6_2/3 3 1/3
Uo =_ +_ _ ,

512 2
(_)0 = + _ c-

p.-

1 -2/3 "_2 1/6

LII, 2 " _ E ± _- _--

512
-- + 6--2B(g3)1.2

1 E 1/3
U 3 ------_

and

7 6_ 2(53)3 = -_ ,

where unnecessary higher order terms are omitted.
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and

The re fore

U 3 < LI 2 < U 0 < U1J

(g3) 0 > O, (g3)l > O, (ga) 2 > O, and (g3) 3 < O.

Table i shows the results. From this table, combined

with (4. 7),it is easy to find the sign of_(u) (e.g., in the case 3', if u I <u

then A(u) > 0, if u 0 <u < u I or u 2 < u < u 0 then A(u) < 0, and so forth).

Table 1

Roots of A(u) = 0 and Sign of g3 at Respective Roots

t

Cases u i (%)0 [ (ga)l (_a)2

Case 1

Case 2'

Case 2"

Case 3'

Case 3"

Case 4'

Case 4"

Case 5

u 1 < u 0

u 3 < u 2 < u I < u 0

u 0 < u 1

u 3 < u 2 < u 0 < u 1

UO < u3 < t]2 < ul

tl 3 < u 0 < u 2 < u 1

u 3 < u 0 < u 2 < u 1

u 3 < u 0 < u 2 < u 1

+

+

+

+

+

+

,r

+

+

+

+

+ +

+

+ +

+

+

+
J

§5 Values of />and X

For the purpose of giving a real expression of the solutions, it is also

necessary to have the range in which p orx falls. As a first step, a com-

parison is made here between _o(p) or _(X) and the parameters of v-function,

namely e I, e2, and e3. Let

4_aa (z)- g2 Sa(z) - g3 = 4 (ga(z) - el) (_(z) - ea) (Sa(z) - es), (5.1)

19



then it is well known that if the discriminant A > 0, the three parameters

el, e 2, and e 3 are all real; contrary to this, if A < 0, then only one of

them, say e I, is real.

Since

_,(p) 2 = 4 (9(p) - e 1) (p(P) - e 2) (P(P) - e3), (5.2)

2 2 , (3.z)
_,(p) = _ (a 1 + a 1 a2) a o is real,

and

, 2 a a 2 + 2a_) (ao') -3/2 is imaginary,(P)- i(ao a3 + 3ao' 1

it follows that, when A > 0:

ga(p) < e 3 or e 2 <_o(p) < e 1 ,
(5.3)

where the three arguments are denoted such that

e 3 <e 2 <e I

Similarly, with

_('X) =_s(p) +_ _s (p) = P is real

_'('A) = -t3' fl-1 _o _s'(p) -= iQ is imaginary,

(4.z)

when A > 0:

_(X) < e3 or e 2 < < e,. (5.4)

ZO



In the case when A < O, it follows necessarily that

_(p) < e i

and

_(X) < e l •

Besides, from (4.2) it follows that

J

(s.5)

that is to say (_' < 0), i' (E)>

u<u 0 •

The above is simply obtained. The next is to decide whether 9(X)and

_a(p) drop either in the region between e 1 ande 2 or the region smaller

than ea. This decision can be given by knowing the behavior near u = u 0 ,

where generally the situation is changed, and by knowing the behavior in

the extreme case such as u- +m The detailed calculations are omitted

here, and only the results thus obtained are listed in Table 2. In this

table, for brevity, we let:

P =ga(X ) and ga =_a(p). (5.6)

Besides, ga '(x)/i andga' (p)/i are determined by

ga'('x)/i _ Q = 16/3' (u - u0), (5.7)

and

, , )-1/2 (u - uo),g_ (p)/i = - 16 (a o (5.s)
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which give us the sign of both values, provided that (a0') I/=, or more

rigorously (a0'),I/2 _ (a0)I/2//31/3 is non-negative without any restric-

tion. In effect, since in the form of the solutions h and k , or more

t

rigorously h. = h/fll/3andk. -k//31/,_have (a0)-I/2, or more rigorously

(a0)[. I/2 = _I/3/2(-2_')I/2, as a factor, the change of sign of (a0) I/2

as a whole does not produce any real difference in the solutions at all.

It is to be noted that when _<0 this provision means (a0)-I/2 itself,

which does not mean a non-dimensional quantity (a0)$ I/2 , should be

taken as negative. By this method we may ignore the difference

of sign of /3but may unify the procedure as a whole. This is justified

directly from the fact that in the equations of motion the sign of _ can

be changed without any significant alternation except for the change

of signs of h and k for the same time.
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Table 2

The Values of P = _(X) and _a = _a(p) <o)
(
1

i Cases

)
[-,

Case 1
l

f
i

Case 2 a

I
)
I
i
)

I

Case 2" I

J
2) See Table 3.

Range of u

u0 <u

u=u 0

u 1 < u < u 0

u<u 1

u0 <11

u =u 0

u 1 <u <u 0

u 2 < u < u 1

u 3 < u < u 2

u<u 3

u I <u

u 0 < u < u 1

u:u 0

u <u 0

Values of Pand_a

_ < e3 < e2 <P< e 1

P=ea=e2: _

P<ea <e2 <p<el

P<_<e 1

_< e3 < e2 <P< el

_=ea=e2=P

P< ea <e2 <_<e I

P<p<e 1

P<p<ea < e2 < el 3)

P<_<e13)

_< e3 <e2 <P<e_

_<P<e 1

_= e3 = e2 =P< el

P<p<e 1

Classification 2)

01

02

12

01

02

12

.22

12

01

11

Sign of

_'(X) andga'( p. )
1 1

12

3) e1 in the lower line is the continuation of ea in the upper line as a result of the dropping of e1

and e2 in the upper line into imaginary vaJues.
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Table 2 (Continued)

Sign of

Rangeof u Values of Pandp _o'(X ) _o'(p) Classification
--r-- and ---r--

1 1

CGs_s

Cas_ 31

Case 3"

Case 4'

4) • I
and e 2

u I <u

u 0 < u < u 1

o =u 0

u 2 < u < u 0

u 3 < u < u 2

kl <U 3

UI <LI

u 2 <U<U 1

u 3 < u < u 2

u 0 < u < u 3

U roll 0

U <U 0

U 1 <U

U 2 < U < U 1

u 0 < u < u 2

U =U 0

u 3 < u < u 0

u<u 3

_< e 3 < e 2 <P< e 1

p<P<e I

_) = e 3 = e 2 = P

P<_o<e z

P< _o< e 3 < e 2 < el3)

P<&_ < e13)

p< e 3 < e 2 <P< e 1

4)

< P < e 3 < e 2 < el4)

_o<P<e 1

,p = e 2 = e 3 =P < e 1

P<_<e 1

to < e 3 < e 2 <P < e]

_o<P<e 1

e 3 < e 2 < _o < P < e 1

_ = e 3 = e 2 = P

P <_ < e 3 < e 2 < e13)

P < _ < ez3)

0

4-

+

+

0

-t-

O

-i-

+

Ol

ii

12

22

12

01

11

21

11

12

Ol

11

23

22

12

in the upper line is the continuation of e3 in the lower line as o result of the dropping of e l
in the lower line into imaginary values.
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Cases

---- j

Case 4 u

Case S

Table 2 (Continued)

Range of u

ul <u

u 2 < u < u 1

u 0 "z u ,4 u2

u =U O

u 3 < u < u 0

u <u 3

Ul <u

u 2 < u < tl 1

u 0 *( u < u 2

u =u 0

u 3 < u < u 0

u<u 3

Values of Pandgo

go < e 3 < e 2 < P < e t

4)
_o<P<e_

go < P < e 3 < e 2 < el4)

_o--P=e 3 =e 2

e 3 < e 2 <P<_< e 1

P<_o<e 1

' fa < e3 < e2 <P < e I

J _o<p<e 1

l e < e 2 < _p < P < e I

e2 = P =ga-- e 1

e 3 < e 2 <P < _ < e 1

P<£<e 1

Sign of

go" (X.) and _' (P.)
1 1

m

0
I

t

0

+

+

Classification

O1

11

21

24

12

O1

11

23

24

12

I
I

Z5



The next step is to determine the range in which t:'or zwill

fall. For this purpose it is convenient to classify the various cases

which are associated also with the value ofu. This was done in

the last column of the Table Z. The specification of each class is

given in Table 3. Thus we can determine the range of p and X, if

we remember that:

" thenwhen A < 0, if 0 < v < :c 1,

- oo < 9(iu) < e,, and go'(iu)/i < 0,

" " th e nbut if _I < _ < 2a) 1,

e I >p(iu) >-oo, and go'(iu)/i > 0,

(F)

where col i is the purely imaginary semi-period given by

__el dp
a_l = oo 74@i -p) (e_ -p) (e a -p)

(5.9)

when el is real.

On the other hand, when A > 0 ,

if 0<v<_" , then

e I >_(_' + iz_) > e 2, ,_o'(co' + iu)/i > 0,

-co<go(iv) <e a, and N'(i'J)/i <0,

but if co" < _ < 2cc", then

e2 <p(cC +iu) <e 1, g)'(6o' +iu)/i <0

e 3 >_o(iu) > -co and g_' (i_)/i > 0,

(G)
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X

CL

0

C

e<

0

cD

C

09 "O ,,

_ QX

0

0 "'_
• ,._ _ _

_" 0

_ U

U'I

o

II

X

I1

V V

X X

v V

V V

V V

0 0

a

V V

v V

V V

0

£

V V V V

V v V V

V V V V

:-<_x

+

",3

+ "4-

"3 "8

I + I + I -I- I "4-

V V

V V

V V

0 0

V V

V V

V V

V V
V V

V V V V

O V
V

V V el

V V V V

•-_ ¢N

0 0

-o"
t-
O
1"4

0

0
e-

c-
O

/k

0

O_
t-

--0
c-
O

V
0

a_
c_2

D_
o

0

t,..) _

m

Z_..)
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where w' is the real semi-period and co'i is the purely imaginary semi-

period given by (e3 < e2 < el)

co

co' = _ dp , (5.10)
e! "_/4(p -el) (p-e,>) (p-e 3)

and

e 3

o_" = F dp . (5.11)

L 1/4(el -P) (e2 - P) (e3 - P)

§ 6 Real Expression of Solutions

As seen in the preceding section the values p and X are uniquely

determined within the parallelogram, which is (2c_', 2cJ"i) for A > 0

or (2cJ_, c0_ + oJ1 i) for A< 0 ; however, the parameters which are in-

cluded in the expression of solutions are not p and X respectively but

i I
p and _ X. These values can not be uniquely determined in the parallel-

ogram but correspond to the four values respectively. In effect, u

is uniquely determined by: _o(u) = given constant, _'(u) has given sign,

then
1 , 1 co" u , ,,
2v+co _v+ i, and-_+_ +o_ i, forA>0,

or

1 , 1 1 , . 3 • 1 ,,
2u+o_i, _v+_-(_, +co, i), andlv+_o_l +_coli, for A< 0.

are all required values as well as -_.

Z8



This phenomenon, however, does not provide any es sential difficulty.

In effect, the change from _ to -_ + -_'
produces only a half period

advance, and this is cancelled out by choosing the proper value for the

I

additive constant k. On the other hand, the change from-_ u to
d,,

1 ! 1 ,,
w . _"ior Co _ v + _ (_ +a_, i) produces another series of solu-

tions, which satisfy the equations of motion as well as the given energy

constant u. Speaking from the results advancely, Class Z (which includes

Classes ZI-Z4) has two series of real solutions; contrary to this, Class 1

has only one series of real solutions while the other corresponds to

imaginary solutions, and Class 0 has no series of real solutions. This

change can be also carried out by changing k to N' + oJ"i or

k'+ _I (oj1+, (J"i) without any alternation of_P andIx respectively

as was done by Andoyer, since the solutions are periodic qua function

1
ofk,_p__ or_- X respectively, and the argument,is in the form of

k+_l _i 1 I
- 2 p --_ )< " Accordingly, we may fix the values for -_p and-_-X. And from

l
_(p +X) --×,,

and (6.1)

I
_-(p-x) =×2,

we may constructTable 4.

Thus we have obtained the real expressions of the solutions

in each class. From (3.1) the expressions of h and k are easily obtained:

Z9



Table 4

Constants X 1 and X 2

Class]

01

02

11

12

21

22

23

24

1 1
×_ :-_(;+X) ×2 :y(P-X)

i , ' i
:-_ +X l ,

1
_.._' + XI .i,

I

Xli,

×_i,

!

XIi,

" I iX 1 ,

_' + X_ i,

" . 3 l/
-- < _(t

2 1 "_'_

Co)_l , .<3 ,,-- <X
2 1 _'_

0<" ' <_1X1

"<" ' <0-_I X i

O<X_ <_"

_" <X_ < 2oJ"

" " ' < 2_"<X 1

O<X_ <oJ"

1 , " ' <0:---_ +X'i -oJ <X 2
2 2 '

' <01 c_' ' i -_" <X 2-_- +X 2 ,

_.J Ii

'j. 1 <', J<OX 2 , --- X 2
2
t/

OJ"
"' , <'' <0
X 2 i --_- X 2

09 sl

" ' , <X' <0X 2 i -7 2

CO H
#

Xji, -_- <X 2 <0

6c) #

' , <X' <0
X 2 i -7 2

30



1
h =_ (p + q)

o

1

+ _(r +k+X2)- _(r +x-×a)

- _(2 X I) - _(2 X_)] (6.Z)

k = _ (p - q)

1
[ _(T + 4 +XI) + _(_r + )v _Xl )

4v F r

- _(r+ _.+×2)_ _(r +X-X2)].

When A> O, the expression o£ {(u) is given by

_(_,)= v____; Y_k
OJ w 2(x)S

O3

2rr _, -q"_+---7- 02 n sin n_To0 i co' (_'T- ""
I1=1

(6.3)

where the double signs should be taken according to the sign of the

imaginary part of _,:
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upper sign for 0 < Im(u) < 200"

or lower sign for -2co" < Ira(v) < O,

q = exp [.rrco"/af],

= _(eo'), (6.4)

_' is the real semi-period, and a0"i is the purely imaginary semi-period;

when A < 0 ,

_i _
_(u)=---r 7

_1 -_i

n ( )27r Z q___L__*s in nrr 1 • 1 ,,+_-_ l_q_o _ _;_i ;_ %i , (6.s)

where the double sign should be taken according to the sign of the

imaginary part of u:

upper sign for 0 < Im(v) < co I

or lower sign for -a01 < Im(v) < 0,

OD_ +OJlI

ql -= exp 2 a0_ 7r

(= iq2' qa being a real positive value), (6.6)

'71= _(_).

The real semi-period _1 given by "
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GO

c_1 dp

J _'4(p - e ) (p - e2) (p - e3)
e 1 1

(6.7)

and %"i is the purely imaginary semi-period. (Note: oJI

form a system of the fundamental semi-period.)

and
I

2 (°G" +_"1 i)

All the necessarypreparations have been completed and we are now ready

to construct the real expressions of the solutions in the following: (/5' < 0)

whe r e

h __.

A < 0 (Class 1)

1 97

t

i + q22n

n_ ("r + X) +C' 1
COS oJ-_ no J

+

it

°{q_ c_'2n
1 -q2

C" "_
n_ O-+x) + .ofCOS

k __

t

[? °i _ q2 S'

1 + q_n

tJ

2
+ S "

I - q22" n

sin n__q_ (7 + k)

]
n77

sin (7 + k)/ ,
J

/

_'__L'I 3 I/2 7/2 t ,
_" :T6 _ J2 ao-

> (6.8)
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S

by

means the summation extending only over positive odd numbers, and

only over positive even numbers. The coefficients are expressed

" X2"nvvX i nvz
C n = c I' cosh-----r-- + cosh

o41 o4I'

n_7_<I " n_ )<2"
C " - sinh-- + sinh

n77x1" nTzX 2"
' ' s inh

Sn = s I sinh oJ_ _i"

#

nnxl n_X2"
S " = sinh sinh--
n o_{ (,Vle

Ill #1

c ' n_rx1 I n77X2
0

Cn° 2 cosh ojl, _ cosh :_],

Co = _ ! n_vxl" I . n_rx2"" sinh , slnh .
2 _1 2

(6.9)

The coefficients and the arguments involved in the above expressions are

given for each class in Table 5 respectively.

A > 0 (Class 0 has no real solution; on the other hand Glass 2 has

two series of real solutions; the existence of two sub-classes corresponds

to this phenomenon. The second sub-classes are constructed by making

k = k' + _"i in the first sub-classes respectively. After being expanded

into series, the unnecessary prime on _ is omitted in the following.)
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h -

k _

1 77

1 77

2, C cos 7; * • ,
:1

oo

qn S n sin-- (r , k) ,
1 -- 2n (J

n--1

(6._0)

wher e

q = exp [ rr_o ball2 J2 a t.

3
_ 7 /2

-7-1' = Tg o

The coefficients are expressed by

n_X1" nrrX2"

C n : c I sinh "---7--_ + sinh -----7-

II

nz XI nTr X2"

Sn : s I cosh , cosh-_
o_1

ill i#

n_x1 1 n_X21
C =-- sinh---- sinh

no 2 co' 2 _'

(6.11)

The coefficients and arguments involved in the above expressions are

given in Table 6. These constants are chosen such that all the expansions

should be convergent, or in other words, the restriction imposed on (6.3) is

always satisfied. If this would not be satisfied, before being expanded into

series the argument has been changed keeping in mind the periodicity of

h and k qua function of XI.

It seems necessary to add the dimensionality- of co, XI, X2' etc. They

are all expressed in the following way: _, = _2/3 and so forth.
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§7 Characteristics

Some numerical calculations connected with the characteristics

are given here. The characteristics means the orbit without any

regard to the independent variable _ but only the plotted line in h

and k space.

In e ffe ct,

In this problem it is easy to obtain such a characteristic.

F+u=0 (7.I)

gives one; or, in more detail

(h2 + k2) 2 + (Y +/_')h 2 + (Y-/9')k 2 - ;3h + u = 0. (7.a)

The same procedure of the non-dimensional analysis taken in §5 gives

the following form (omitting the subscript ':_):

(h2 + k2) 2 + (W +_')h 2 + (7-/3')k 2 - h + u = 0.

from which we have simply

1 _, }k==- h 2 +5(7- )

/_ : f,):+ 2/3' h a + h- u + _, (T- •

Accordingly, by putting

and

U I =-2/5'h a + h +_ (7-

U2 = -h4 - (T - /_')h2 + h,

the following criterion is given:

38
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i) if u > U1, then 0 solution for k;

ii)1 if u < U I, h2 + _ (7- ) > 0,

ii)11 and u > Us,

ii)l 2 or u <U 2,

then 0 solution,

then 2 solutions;

ii)2 if u <U 1, h2 +2 (7- ) < O,

ii)21 and u > U2,

ii)== or u < U2,

then 4 solutions,

then 2 solutions.

(H)

The critical values for u also come from these criterion as follows:

($UI 1 : 0

u ° : U I (ho), \-_/h= h
o

(7.5)

: 0 (i : 1, 2, 3). (7.6)

ui =U2 (hi)' \Bh/h=h i

As an example, one set of fi' and7 for each (I .... III ) is

taken and several characteristics corresponding to some values

of u are given in Figs. 2-16. Table 7 presents the numerical

values of u i(i = 0 .... 3) etc. Also added is the Case E where fl.' = -0.13,

which is, of course, included in Case III, but this is the actual case for the

earth. Adopted values of the harmonic coefficients are from Kozai (1962b):
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J2 = 1082.36 × 10 -6 J3

Accordingly,

J4 =-2"14 × 10 -6 Js

]
> (7.7)

fl=0.147 x 10 -3 .ao 3, /31/3 = 0.0528 ao:

fi' =-0.360 × 10 -3 "ao "2

-2
7 = -2a - 5.540 x 10 -3 • a o (a = 1 - 5H_/L 2)

(7.8)

It

fll =-4'24 × 10 -s aol;

therefore,

ft. = fl / L_ =-0.129

2
?, = - 71.7 a0 a- 1.99

h, = 18.9 aoh = 18.9 a o e sing - 0.0201

k, = 18.9aok = 18.9aoe cos g,

(7.9)

where a 0 stands for the mean semi-major axis, e for the eccentricity,

and g for the argument of perigee.

It is noted that in the case of the earth the asymmetrical part comes

#

mainly from Js, but not from J3" The linear shift term (/31) which de-

pends only ou Ja in our theory is small. It is also noted that /3" is not

dependent on the mean semi-major axis a 0 but only on Jn s, therefore,

if the potential is given, it is an absolute constant.
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In concluding this section, we should add some remarks

on the critical value u0. As is seen from Table 7, the critical value

u 0 corresponds neither to stable point nor to a unstable one except for

Case 5, where of course it corresponds to the unstable points. The

sign of (g3)0 is positive except for Case 5. Therefore it might be con-

sidered that u 0 corresponds to a stable point. In fact, however, it cor-

responds to imaginary equilibrium points. Or in other words, if we

draw the characteristics corresponding tou 0 it is split into two circles

given by

and for Case 5 two circles meet at two points so that the two points become

unstable points; on the other hand, except for Case 5, they cannot meet

each other or the radii(us} of one or both circle(s) become(s) imaginary.
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Table 7

Critical Values of u, and Corresponding h. and k,

Case I /3,' = -3.0

Sub-case I _y'-
.,--

I +2.0
1

1 2

1 3

1 4

1
5

+I.0

I

3

0.0 1

0

2

3

-2.0 1

2

0

3

-4.0 I 12

I°3

il
0 + 6.2083

1 + 1.0548

0 + 3. 9583

1 + 2.0562

2 + 0.0734

- 0.1295

+ 3.5139

+ 2.2083

+ 1.0702

- 0.0840

+ 7.8553

+ 4.6947

+ 0.2083

- 0.0500

+14.1383

+10.3976

+ 0.2083

- 0.0358

I I
h,i i k, Remarku*i i I i

+0.8847

+1.1072

-0.8376

-0.2696

!+1.3008

-1.1309

i-0.1699

I
+1.6290

-1.5286

! -

I-0.1004

+1.9056

-1.8340

-0.0833

-0.0715

t 0.0
i
i
I

0.0

0.0

0.0

, 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

+-0.7022

i .0.0

stable

stable

stable

unstable

stable

stable

unstable

stable

stable

unstable

stable

stable

unstable

stable
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Case II /3. = -1.0

II I +2.0 0

1

II 2 0.0

II -0.6
3

II 4 -I.0

II -2.0
5

1

0

2

3

1

2

0

3

1

2

0

3

Table 7 (Continued)

u.i h,i k,i Remarks

+2.1250

+0.2148

+1.0548

+0.1250

+1.6022

-0.0850

-0.1524

-0.1698

+2.0562

+0.0734

-0.1250

-0.1295

+3.5139

+1.0702

+0.1250

-0.0840

+0.3855

+0.8847

+1.0221

-0.6396

-0.3823

+1.1072

-0.8376

-0.2696

+1.3008

-1.1309

-0.2500

-0.1699

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

±0.6614

0.0

stable

stable

stable

stable

unstable

stable

stable

unstable

stable

stable

!unstable

stable
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Case IIl /3._ =-0.25

Sub-case , 7. i
i

IIIz +3.0 0

i

1112 ' 0.0
[

IIIs

1114

Ills

-1.3

-1.5

1

! -3.0

3

l

I

0

i

2

3

0

,I

2

0

i3
i

1

2

_0

Table 7 (Continued)

u h k Remarks
*i *i *i

+ 0.7656

+0.1371

*0.5825

-0.4844

i ,1.5506

i -0.1717

i -0.1777

+0.2645

+0.6959

+1.0111

-0. 5966

-0.4145

0.0

0.0

P

0.0

0.0

0.0

stable

stable

stable

unstable

stable

! --0.

,1.
1 --0.

--0.

i --0.

2244

7641

0815

1094

1512

+3.9518

+1.4070

+1.3906

-0.0775

,1.0546

-0.7296

-0.3249

+1.3457

-1.1895

-1.0000

t -0.1562
i

0.0

0.0

0.0

0.0

0.0

±0.6124

0.0

stable

unstable

stable

stable

stable

unstable

stable
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Case E _

Sub-case

n 1

Ks i
b

E 3

J

E 4

E 5

i

Table 7 (Continued)

= -0.13

y, i u,i

+3.0 0 + 1.4877

1 + 0.0863

0.0 1 + 0.5269

0 - 0.9573

-1.5 1 + 1.6337

2 - 0.1397

3 - 0.1655

0 - 0.4923

-3.0 1 + 3.7379

2 + 1.2412

0 + 1.0977

3 - 0.0806

-8.0 1 +18.5553

2 +14.5236

0 +14.5227

3 - 0.0302

+0.1707

+0.6643

+1.0286

-0.6608

-0.3679

m

+1.3243

-1.1618

-0.1625

+2.0463

-1.9847

-1.9231

-0.0611

k
*i

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

+0.4865

0.0

Remarks

stable

stable

stable

unstable

stable

stable

unstable

stable

stable

stable

unstable

stable
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_8 Discussions

i. As mentioned before in _6 the expansions of solutions are so

arranged that they are always convergent, But it is still a problem to

find out the most efficient expansions for the solutions; in other words,

to rearrange the; series when it is too slowly convergent. This situa-

tion occurs when q tends to the unity. In such a case we have another

type of expansion by exchanging the real period and imaginary period

with each other, so that for the extreme case of q = i we have hyper-

bolic functions instead of circular functions.

In any way, in order to have suitable expansions of the solutions it

is necessary to rearrange them into a different form appropriate to

each case, respectively.

Also neglected is a proper Inethod to calculate semi-periods

;s

(4,' _J' i, o_' or_l i ) in terms of given constants /3', Tand u. These

calculations are closely related with the evaluation of q (if A > 0) or

q_ (if A < 0). The numerical processes to find p and X are also

omitted here.

These practical problems are, of course, important if we wish to

obtai_ the solutions in detail but they are so complicated that their

discussion will be postponed.

2. The adoption of non-dimensional analysis in units of the proper

powers of/3 is of course optional. We can treat the calculation without

any non-dimensional analysis; or we may have another type of non-

dimensional analysis in terms of /3' or T for example. However, the

process which we treated in this paper has a slight advantage; firstly,

in doing so /3'.is an absolute constant depending only on the coefficients
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of harlmonic_ but independent of the initial condi_on; secondly, wc may trca[

both the cas_s _' > 0 or_' < O, in the same framework, for example,we can

draw a diagram such as Fig. 1 on a single sheet; thirdly, the difference

between /3> 0 and fi< 0 can be neglected automatically by always selecting

the sign of _/3f__ or -_ such that _y_,, _ > O. Thim is cauBod by tt_o

fact that the difference between 73 > 0 and ,B < 0 remains only on the sign

of h and k but there is no difference on the nature of the critical character,

etc.

3. We have assumed Jn to be of n-th order of magnitude. But if those

assumptions are broken down, how shall the situation change? We may

consider this breakdown as follows within our framework: _ -. 0, in

other words a non-effective case of the anti-asymmetrical terms J3 and Js

(/3' -co). In this case, the range h. and k. for the critical nature (the

transition from librational to revolutional) is not restricted in a limited

area according as 7. _-co, but h and k themselves are limited. There-

fore we may tend/3 -. 0 without any essential difficulty in our theory.

On the other hand if /3'_ 0, keeping_ constant the range of h, and

R_ as well as h and k themselves for the critical nature are not restricted

as V, - - 00. Therefore, another type of theory would be required which

could treat not only the small eccentricity case but also the moderate

eccentricity case. In this case where the anti-asymmetrical terms pre-

vail over the symmetrical terms, the general feature, which is constructed

here by adding the anti-asymmetrical terms to the symmetrical terms or

at most by considering the same order contributions in some meaning fro:n

both sources, would be broken down. Fortunately, since /3_ for the earth

is approximately -0.13, it does not seem to necessitate any new theory

for this respect.
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4. A higher order theory beyond the one discussed here could be

developed along the line which we gave in a previous paper

(!96Z). However we must keep in mind the restriction made there

that the leading terms which are, for example, the ones discussed here,

should prevail to the remaining terms. In other words, if the leading

terms are so small that the neglected terms play an important role in

the behavior of the solution, then such an approximation process would

be broken down. In addition, in the present paper, we have taken into

account two parameters such as _ andS', the former is assumed to be

third order and the latter is of second order; namely the non-dimensional

quantity _.' = _'/_2/3is assumed to be far from zero or from the infinity.

In the previous paper, it is assumed that, for example, .[23, -[2J4 and

J6 are all of the third ordcr of 32 +.[4/.[2 ; this means that, if .[2 + J4/32

tends to zero, J23 etc. should tend to zero as well, in order to be able to

apply the general treatment described there, otherwise the leading terms

are so small that the series obtained along the theory would be divergent.

A similar situation occurs in the present theory in the aforementioned

sub-section 3. This is also true in the case of the higher order

theories than discussed. At any rate it is important to consider first the

most significant l_arts oi _he terms.

The difference between the previous theory and the present one

exists in the fact that here the anti-asymmetrical terms are given

the same importance as of the symmetrical terms by assuming that

Jn is of the n-th order of _lagnitude in the case of small eccentricity.
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§9 Conclusio_

in this paper we tried to solve the equations of motion of a

close satellite near the critical inclination in the case of small eccen-

tricity under the influence of the potential given by

Assumed are as follows: the coefficient of zonal harmonics In is of

the n-th order of magnitude and the eccentricity is of the first order

of magnitude. The terms which are taken in the Hamiltonian are of the

sixth order of magnitude in this respect; namely, the terms which have

e472, e214, e373, e7213, eJs etc. as factor are included. It is also

noted that the lower order terms do not enter the Hamiltonian except for

unnecessary constant terms.

In §6 the explicit solutions are given with classification according

to the interrelation of /3.', _/. and u. (as for the definition of these

quantities, see Eqs. (4.4), (Z.ig) and (3.4)), where /3' strictly depends

on the coefficients of zonal harmonics In' V. depends on the projected

angular momentum to the equatorial plane as well, and u. i8 the energy

constant in units of/34/3. This classification is made in order to have

real expressions for the solutions. Three parameters involved are

expressed by the non-dimensional quantities so that one may have the

actual solutions by factoring a proper power of/3 I/3 , which is assumed

as of the first order magnitude.

5"or the earth_ I/3 is +0.05Z8/a0; accordingly, if the eccentricity

is confined within some range, say 0.05 or 0.10, then the theory devel-

oped here is applicable.
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In any way it is noted that the transition from the symmetrical term

prevailing case to the anti-symmetrical prevailing case within the

approximation adopted here occurs at (between Case II and Case Ill,

where a great change especially in characteristics occurs)"

1

- _

This quantity for the earth is approximately -0.13; therefore, the

earth's potential is in the anti-asymmetrical term prevailing case in

this respect.

Acknowledgments

The present author would like to express his hearty gratitude to

Drs. P. Musen and Y. Kozai for their helpful discussions and for many

valuable comments. Thanks also due to Mrs. D. Hoover for her kind

cooperation with computation of the necessary materials to draw

Figs. 2- 2-i.

50



RE_ERENCES

Aoki, S., 1962, A.J. 67, 571 (Abstract); A.J. 68 (in press)

Andoyer, H., 1903, Bull. Astronomique 20, 321

Kozai, Y., 1961, Smithsonian Contr. to Astrophys., 5, No. 5, 53.

196Za, Astronorn. J. 67, 446.

196Zb, The Potential of the ]Earth Derived from Satellite

Motions. Read at the Intermational Syrn. on the Dynamics of

Satellites, May, Paris.

51



- +4.0

°
I

Case 3'
I

--3.0 --2.0
Case 3'

Case 1

Case 2"

I

--I.0

Case 2'I

+3.0
i

i_ +2.0

I
I
1

+l.O

Case a'

+1.0
I I

+2.0 +3.0

Case 4'

Case 3"

Case a"

--2.0

Case 5

Case b'



--1.0

h;i,

- +2.0

2O

0.0

- -2.0

+1.0
k_

Fig 2 Characteristics in h, and k,--plane,
1 1

h,=h/# 3, k,=k/#

_',.-_--3.0,'Y,=+2.0 (Case I1, or Case 1)



, 1
--1.0

t

\
%

\
%

\
,&

\,\ o;o"

)!

,a_+ !

- -2.0

h*

+2.0

r u,=--O.130

u,=+0.073

\
!

!
#

I
I

/
/

/
+1.0

k_

Fig 3 #',=-3.0. ",',=+1.0

(Case 12. or Case 2')



+2.0

! ., u,=+_._.4 \

•,, /
\ /

"\, /
--1.0

/
!

. i
6

\
-\
/

#

/ \.
\

\
- --i.0 i

ac u,=+I.070

\.,_L.,,.'

w

/
\.

1

+I.0
k,

- --2.0

Fig 4 #',=-3.0, -y,=O.O (Case 13, or Case. 3')



h_

i
\

Ii

\
\

\

/
/

t
II

/-

e

/-

/
/

/"

+1.0

\

o

/
o

\

\

\ t, + o.=+4.69_ / /

•\.X.
\_J ./

_O_o m,...., ° J °/

k_

Fig 5 #',=--3.0, T ,=--2.0 (Case 14, or Case 4')



h+3.0

/_'\,
/// \\'\,

I// _+t°,_,_Z\ \
i/ ( t-" ......1 kk
/f ",,. t _.:A.oj!

_ x..._ -+,.o_ o..=+o._o_
_, .,/,

.'7i-.< +2:0

[ /f -,.o--_u. !

u,,,=+0.208

\\ ( ++,o_l J/
\. -2 0 "

k_

Fig 6 j'.=--3.0, 7,=--4.0

(Case 15, or Case 5)



h_

- +2.0

u,=+.215--;._-t-

-l.O

Fig 7 _',,=--1.0,_,=+2.0

(Case II 1, or Case 1)

I k,
+1.0



h_

- +2.O

J

1.0

Fig 8 _','---- 1.0, ",%=0.0

(Case 112, or Case 2")



h*

+2.0

--2.0

// _ \
, i

ii

u.=O.O

11.o \. _=-.17o I.oi

_"\./'/ /
/\\ /

k_

Fig 9 #',=-1.0, T,=--0.6

(Case t1._.or Case 3')



h_

- ,-i.-2.0

k*k

Fig 10 #',=--1.0, T.=-I.O

(Case 114,or Case 4')



hx_

-t-2.0

//"/ I \ \._.____o

i! i _.=+o._

\:,_. //
i _k //
i _':k /" _-"_. //
, -,.o\._ / ,f-,o,=o.o',,. .//+,o k.,

- -2.0

Fig 11 i_',-----1.O,-y,=-2.0

(Case 115,or Case 5)



h_

+1.0

/ fl _._o.o\

- --1.0

I

+1.0
k_

Fig 12 #',=--0.25, T,=+2.0

(Case I Ill, or Case 1)



i
I

I
J
i

_i u,=-l.o

/ / _o u,__y\

--1.0 +1.0

_- --1.0

k_-

Fig 13 #',------0.25 , _',=- 0.0

(Case 1112,or Case 2")



u,:--0.172

Fig14 #',:-0.25, 7,----1.3
(Case1113,or Case3")



h,

k_

t

Fig 15 #',_=-0.25, 7,=--1.5

(Case 1114,or Case 4")



U,=+3.0

k_.

Fig 16 #'.=--0.25, .y.=--3.0

(Case 1115,or Case 5)



D

aohl=aoe sin g

- 0.10

+0.05
l
i

, u,=-l.O

iJu,=+ooa6I- Z:_
, _ \.J°'=°'° ,

j
L -0.05

I

+0.05

aok=

aoe cos g

Fig 17 #'_-----0.13, ?,=+3.0

(Case El, or Case 1)

(Figs 17-21 correspond to the case for the earth)



).05

•0.05

J

J
J



aohl --aoe sin g

+0.10

/

!
--0.05

u,=+1.634-_

\

+0.05

Fig 19 _',=--.13.-_,=-1.5

(Case E3, or Case 3")



aohl =ao e SinE

+0

+0.05

\
\

-0.05

\

\

=0.0 i

ao K=

aoe co5

_0.i0

(Case E4, or case 4")

• ._._/I

_......---



aohl--aoe sin g

t 4.0.15

L

u,=4.18.555 _ 4,0.10

I

u,=4,12.0

u,=+16.0

\

aok=

aoe cos

Fig 21 fl'.=--0.13, _,.=--8.0

(Case E5, or Case 5)


